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Abstract

The Point-to-Point Tunneling Protocol (PPTP) is used
to secure PPP connections over TCP/IP links. In
this paper we analyze Microsoft’s Windows NT imple-
mentation of PPTP. We show how to break both the
challenge/response authentication protocol (Microsoft
CHAP) and the RC4 encryption protocol (MPPE), as
well as how to attack the control channel in Microsoft’s
implementation. These attacks do not necessarily break
PPTP, but only Microsoft’s implementation of the pro-
tocol.

1 Introduction

Many organizations and institutions are not centralized.
Branch offices, virtual corporations, and traveling em-
ployees make the notion of running dedicated network
connections to each location logistically impossible. The
concept of virtual networking provides a solution to this
problem by tunneling cojoined network space over other,
transitory and insecure, networks (such as the Internet),
thus enabling remote locations to appear to be local.
This is done without the expense incurred from running
leased lines or dedicated cabling to each location, and is
sometimes called a “tunnel.”

While virtual networks solve the problem of de-
centralized machines, they create a new problem. They
open up traffic that was previously considered internal
to the company, to any prying eyes on the networks it
traverses. Authentication and encryption are required
to keep this virtual network traffic not only tamperproof
but private. The result, virtual networking connections
combined with cryptographic protections, is a Virtual
Private Network (VPN).

The security of a VPN is based on the security of its
authentication and encryption protocols. If a VPN’s

cryptography is weak, then its security is no better
than a non-private virtual network routed over the Inter-
net. Since companies are relying upon VPNs to extend
trusted internal perimiters to remote offices, breaking
the security around such a tunnel is tantamount to de-
feating all of the security around the internal perimiter.
Breaking into a VPN is often the same as penetrating
the firewall.

The Point-to-Point Tunneling Protocol (PPTP) was de-
signed to solve this problem of creating and maintaining
a VPN over a public TCP/IP network using the common
Point-to-Point Protocol (PPP). Although the protocol
leaves room for every type of encryption and authen-
tication imaginable, most commercial products use the
Microsoft Windows NT version of the protocol. This is
the implementation that we cryptanalyze in this paper.

We have found Microsoft’s authentication protocol to be
weak and easily susceptible to a dictionary attack; most
passwords can be recovered within hours. We have found
the encryption–both 40-bit and 128-bit–to be equally
weak, and have discovered a series of bad design deci-
sions that make other attacks against this encryption
possible. We can open connections through a firewall
by abusing the PPTP negotiations, and can mount sev-
eral serious denial-of-service attacks on anyone who uses
Microsoft PPTP.

The remainder of this paper is divided into sections as
follows: In Section 2 we describe PPTP, both the generic
protocol and Microsoft’s implementation. In Section 3,
we describe the two password hashing functions in Mi-
crosoft PPTP and describe how to attack them. In Sec-
tion 4 we cryptanalyze Microsoft’s authentication proto-
col, and in Section 5 we cryptanalyze Microsoft’s encryp-
tion protocol. We look at other attacks against Microsoft
PPTP in Section 6. Finally, in Section 7 we attempt to
reach some conclusions.

2 Point-to-Point Tunneling Protocol

PPTP [HPV+97] is a protocol that allows PPP connec-
tions [Sim94] to be tunneled through an IP network, cre-
ating a VPN. Thus, a remote machine on network X can
tunnel traffic to a gateway machine on network Y and
appear to be sitting, with an internal IP address, on



network Y. The gateway machine receives traffic to this
internal IP address, and sends it back to the remote ma-
chine on network X. There are two primary ways of using
PPTP, either directly over the Internet or through dial
up services. This paper focuses on the use of PPTP as
a Virtual Private Network where the client is directly
attached to the Internet.

PPTP works by encapsulating the virtual network pack-
ets inside of PPP packets, which are in turn encapsulated
in Generic Routing Encapsulation (GRE) [HLFT94]
packets sent over IP from the client to the gateway PPTP
server and back again. In conjunction with this encapsu-
lated data channel, there is a TCP-based control session.
The control session packets are used to query status and
to convey signaling information between the client and
the server. The control channel is initiated by the client
to the server on TCP port 1723. In most cases this is
a bi-directional communication channel where the client
can send requests to the server and vice-versa.

PPTP does not specify specific algorithms for authen-
tication and encryption; instead it provides a frame-
work for negotiating particular algorithms. This ne-
gotiation is not specific to PPTP, and relies upon ex-
isting PPP option negotiations contained within CCP,
CHAP, and other PPP extensions and enhancements
[LS92, Mey96, Ran96, Sim96, BV98]. Just as PPP
sessions have been able to netogiate compression algo-
rithms, they can negotiate authentication or encryption
algorithms. Appendix A provides details of this negoti-
ation process.

2.1 Microsoft PPTP

Microsoft PPTP [Mic96a, Mic96b] is part of Windows
NT Server, and can be downloaded free from the Mi-
crosoft website [Kli98] and enabled using the Windows
Network Control Panel and the Registry Editor. This
implementation of PPTP is used extensively in commer-
cial VPN products precisely because it is already a part
of the Microsoft operating systems.

The Microsoft PPTP server can only be run under Win-
dows NT, although client software exists for Windows
NT, Windows some, and Windows 98. There are three
authentication options supported in the Microsoft imple-
mentations:

1. Clear Password: The client sends the server a pass-
word in the clear.

2. Hashed Password: The client sends the server a
hash of the password, as described in Section 3.

3. Challenge/Response: The client and the server au-
thenticate using the MS-CHAP challenge/response
protocol, as described in Section 4.

The third option is called “Microsoft Authentication” in
the user documentation, and must be enabled in order
for PPTP packets to be encrypted. With either of the
other two authentication options, no encryption is pos-
sible. Additionally, encryption (either 40-bit or 128-bit)
is only guaranteed to be possible if the client is running

Windows NT; some Windows 95 clients cannot establish
encrypted sessions.1

3 Cryptanalysis of Windows NT Password Hash Func-
tions

Microsoft Windows NT uses two one-way hash functions
to protect passwords: the Lan Manager hash and the
Windows NT hash [ZC98]. The Lan Manager hash func-
tion was developed by Microsoft for IBM’s OS2 operat-
ing system, and was integrated into Windows for Work-
groups and optionally in Windows 3.1, and is used in
several additional pre-Windows NT authentication pro-
tocols. The Windows NT hash was developed by Mi-
crosoft specifically for Windows NT. The Lan Manager
hash is based on the DES encryption algorithm [NBS77];
the Windows NT hash is based on MD4 one-way hash
function [Riv91]. Both of these hash functions are used
in many Windows NT authentication protocols, not just
PPTP.

The Lan Manager hash is calculated as follows:

1. Turn the password into a 14-character string, either
by truncating longer passwords or padding shorter
passwords with nulls.

2. Convert all lowercase characters to uppercase.
Numbers and non-alphanumerics remain unaf-
fected.

3. Split the 14-byte string into two seven-byte halves.

4. Using each seven-byte string as a DES key, encrypt
a fixed constant with each key, yielding two 8-byte
encrypted strings.

5. Concatenate the two strings together to create a
single 16-byte hash value.

Dictionary attacks are easy against the Lan Manager
hash for the following reasons [L97b]:

• Most people choose easily guessable passwords
[Kle90].

• All characters are converted to upper case, making
the number of possible passwords even smaller.

• There is no salt; two users with the same password
will always have the same hashed password. Thus,
it is possible to precompute a dictionary of hashed
passwords and compare an unknown password

1According to our experiments, some Windows 95 clients sup-
port Microsoft Authentication and some do not. We do not know
what the difference is, or how to guarantee that a particular Win-
dows 95 system support Microsoft Authentication. If the protocol
is not supported, the option is greyed out on the dialog box. This
restriction is consistent with Microsoft’s claim that Windows 95
does not provide security, and that users who are interested in
security should upgrade to Windows NT. However, Microsoft has
claimed that Windows 95 clients cannot perform the Windows
NT hash, and require the Lan Manager hash. As it turns out,
Windows 95 clients transmit both the Windows NT hash and
the Lan Manager hash. From our examination of the Windows
95 code, there is no reason encryption cannot be enabled in all
Windows 95 clients.



against the dictionary. With this time/memory
trade-off, passwords can be tested as fast as disk
I/O allows.

• The two seven-byte “halves” of the password are
hashed independently. Thus, the two halves can
be brute-forced independently, and the complexity
of the attack is at most the complexity against a
seven-byte password. Passwords longer than seven
characters are no stronger than seven-character
passwords. Additionally, passwords of seven char-
acters or less can be immediately recognized since
the second half of the hash is always the same con-
stant: encryption of the fixed constant with seven
nulls as the key.

The Windows NT hash is calculated as follows:

1. The password, up to 14 characters long and case-
sensitive, is converted to Unicode.2

2. The password is hashed using MD4, yielding a 16
byte hash value.

The Windows NT hash is an improvement over the
Lan Manager hash–case sensitivity, allowing passwords
longer than 14 characters, and hashing the entire pass-
word together instead of in small sections–although there
are no provisions for salt. Thus, two people with the
same password will have the same Windows NT hashed
password; comparing a file of hashed password with a
precomputed dictionary of hashed passwords is still a
very fruitful attack.

Another, more serious, implementation problem makes
attacking the passwords even easier. Even though the
Lan Manager hash was included for backwards compati-
bility, and is not required in Windows NT-only networks,
both hashes are always sent together.3 Therefor, it is
possible to brute-force the password using the weaker
Lan Manager hash, and then test various lower-case al-
ternatives to find the Windows NT hash.4

2Microsoft documentation claims that Windows NT passwords
can be up to 128 characters, and the Windows NT hash function
accepts passwords of that length. However, the NT User Man-
ager limits passwords to 14 characters or less [MB97]. The MS-
CHAP documentation references this limitation [ZC98], which is
also borne out by experimentation.

3In fact, since the only backwards compatibility required for
Microst PPTP is Windows 95, there is no reasson to include it at
all.

4A popular hacker tool, L0phtcrack [L97a], automates the pro-
cess of recovering passwords from these hash values. On a Pen-
tium Pro 200, L0phtcrack 2.0 can check a 200-entry password file
against an 8 Megabyte dictionary of popular passwords in under
a minute. Testing the entire 26-character alphabet space takes
26 hours, and the 36-character alphanumeric space takes about
250 hours. Adding non-alphanumerics significantly increases the
difficulty of this search. Precompting the Lan Manager hash val-
ues of these passwords can increase the speed of these attacks by
several orders of magnitude.

In 1997, Microsoft attempted to modify Windows NT authenti-
cation in response to L0phtcrack. They prevented the Lan Man-
ager hash from being transmitted in a Windows NT-only environ-
ment. This patch appeared on their web site, but was removed
when they discovered during regression testing that many NT
protocols broke. Despite claims from Microsoft, the Lan Man-
ager hash is required for many NT-to-NT communications. Still,
Microsoft strongly recommends disabling the Lan Manager hash
in instances where this is possible [Mic98].

4 Cryptanalysis of MS-CHAP

PPP has in it several methods for handling authenti-
cation. One of these is the Challenge Handshake Au-
thentication Protocol (CHAP). Microsoft’s PPP CHAP
implementation (MS-CHAP) [ZC98] is almost identical
to the authentication method that it uses for client au-
thentication on its Windows-based networks.

MS-CHAP works as follows (see Appendix B for details):

1. Client requests a login challenge.

2. Server sends back an eight-byte random challenge.5

3. The client calculates the Lan Manager hash, and
adds five nulls to create a 21-byte string, and par-
titions the string into three seven-byte keys. Each
key is used to encrypt the challenge, resulting in
a 24-byte encrypted value. This is returned to the
Server as a response. The client does the same with
the Windows NT hash.

4. Server looks up the hash in its database, encrypts
the challenge with the hash, and compares it with
the encrypted hashes it received. If they match,
the authentication completes.
The server could make the comparison on the Win-
dows NT hash or the Lan Manager hash; the re-
sults would be the same. Which hash the server
uses depends on a particular flag in the packet. If
the flag bit is set, the server tests againts the Win-
dows NT hash; if the flag bit is not set, the server
tests against the Lan Manager hash.

On the surface, the challenge/response protocol is stan-
dard; the use of a random login challenge makes precom-
puted dictionary attacks impossible against MS-CHAP
as they are against the file of stored password hashes.
Still, because both the Lan Manager and Windows NT
hashes are transmitted even in a Windows NT-only en-
vironment, it is possible to attack the weaker Lan Man-
ager hash in every case. And because the client’s reply is
divided into thirds, and each third is encrypted indepen-
dently, it is possible to attack the MS-CHAP protocol
itself.

The last eight bytes of the Lan Manager hash is a con-
stant if the password is seven characters or less. This is
true despite the random challenge. Therefore, the last
eight bytes of the Client’s reply will be the challenge en-
crypted with that constant. It is easy to test whether
a given password is seven characters or less. After an
attacker finds the Lan Manager hash, he can use that
information to recover the Windows NT hash.6

5We did not investigate the pseudo-random number genera-
tor used to generate this challenge nor its cryptographic strength
[KSWH98].

6L0phtcrack 2.0 has automated this process as well, and can
recover passwords after eavesdropping on a login session. Time
estimates are longer than for brute-forcing the password, although
large dictionary attacks are still feasible. Microsoft’s response
to L0phtcrack [Mic97] was to remind system administrators to
protect the file of password hashes; this particular attack relies on
communications across the public network, and does not require
access to the hashed password file.



This attack can be sped up considerably through judi-
cious use of precomputation and carefully exploiting the
weaknesses of both the Lan Manager hash and the MS-
CHAP protocol. Details of ths optimized attack follow:

P0 through P13 are the bytes of the password. H0
through H15 are the bytes of the Lan Manager hash,
which becomes a 21-byte key: K0 through K20. S is the
fixed constant used in the Lan Manager hash. The chal-
lenge is C and the 24-byte response is R0 through R23.
An eavesdropper can learn C and R, and wants to find
P .

1. Try all possible values of K14,K15. The right value
can be recognised when C encrypts to R16, . . . , R23
under the key K14,K15, 0, 0, 0, 0, 0. This takes an
average of 215 operations.

2. Try likely values of P7, . . . , P13. Wrong values can
be quickly disgarded by encrypting S under the
guess and checking if the last two bytes of the
ciphertext equal K14 and K15. (This will elimi-
nate all but 1 in 216 of the wrong ones.) Each re-
maining guess of P7, . . . , P13 yields a candidate for
K8, . . . ,K13. To check the candidate, try all pos-
sible values for K7 to see if there is any for which
C encrypts to R8, . . . , R15 under the K8, . . . ,K13
candidate. If there is such a K7, then the guess for
P7, . . . , P13 is almost certainly correct. If not, try
another candidate for P7, . . . , P13. If there are N
likely values of P7, . . . , P13, this recovers the correct
value with about N trial encryptions.
Note that since there is no salt used in the pro-
tocol, this attack can be sped up considerably us-
ing a time/memory tradeoff. With N precomputed
trial encryptions, recovering the correct value of
P7, . . . , P13 takes N/216 work.

3. Once P7, . . . , P13 has been found, recovering val-
ues for P0, . . . , P6 takes M trials, where M is the
number of likely values of P0, . . . , P6. Again, since
there is no salt, the attack can be completed in
N/28 trials with M precomputations.

Additionally, in this protocol only the Client is authenti-
cated. An attacker who hijacks a connection can trivially
masquerade as the Server. If encryption is enabled, the
attacker will not be able to send and receive messages
(unless he breaks the encryption), but by reusing an old
challange value he can obtain two sessions of ciphertext
encrypted with the same key (see atacks based on this
below).

5 Cryptanalysis of MPPE

5.1 Description of MPPE

Microsoft Point-to-Point Encryption (MPPE) protocol
[PZ98] provides a methodology of encrypting PPTP
packets. It assumes the existence of a secret key shared
by both ends of the connection, and uses the RC4 stream
cipher [Sch96] with either a 40-bit key or a 128-bit key.
The method for negotiating the use of MPPE is through
an option in the PPP Compression Control Protocol

(CCP) [Ran96, Pal96a] and is described in Appendix C.
After these negotiations, the PPP session begins passing
payload packets of encrypted data. It is important to
note that only PPP packets whose protocol numbers are
in the range 0x0021 to 0x00fa are encrypted. All other
packets are passed in the clear, even if the encryption
option is enabled. RFC 1700 [RP94] lists the types of
packets that are and are not encrypted.7 There is no
authentication provided for any packets.

In MPPE, the 40-bit RC4 key is determined as follows:

1. Generate a deterministic 64-bit key from a Lan
Manager hash of the user’s password (shared by
both the user and the host) using SHA [NIST93].

2. Set the high-order 24 bits of the key to 0xD1269E.

The 128-bit RC4 key is determined as follows:

1. Concatenate the Windows NT hash of the user’s
password and a 64-bit random nonce created by the
host during the MS-CHAP protocol. This nonce
was sent to the client during the protocol, so is
known by both the client and the server.

2. Generate a deterministic 128-bit key from the re-
sults of the previous step using SHA.

The resulting key is used to initialize RC4 in the usual
manner, and then to encrypt data bytes. After every
256 packets—MPPE maintains a “coherency count” that
records the packet number—a new RC4 key is generated
using the following procedure:

1. Generate a deterministic key—64 bits long for
40-bit encryption and 128 bits long for 128-bit
encryption—by hashing the previous key and the
original key with SHA.

2. If the required key is 40 bits, set the high-order 24
bits of the key to 0xD1269E.

A typical PPTP packet is about 200 bytes long, including
header data.

In the event of synchronization loss, RC4 is reinitialized
with the current key. There is also an option to update
the RC4 key after every packet; this option reduces the
efficiency of encryption by about half because of the time
required to execute the RC4 key schedule.

5.2 Recovering the Key

In MPPE, the security of the key is no greater than the
security of the password. Most passwords have much less
than 40 bits of security and are susceptible to dictionary
attacks [Kle90]. The Lan Manager hash is even more

7While MPPE will encrypt PPP packets containing IP, Nov-
ell IPX, Van Jacobsen Compressed/Uncompressed TCP/IP and
other packets within this range, many important PPP packets will
not be encrypted. Examples include LCP, PAP, CBCP, CHAP,
IPCP, among others.



vulnerable; because of the maximum sie, limited alpha-
bet and lack of lower-case characters, it is impossible to
generate a 128-bit key even if the user wanted to. The
MPPE documentation includes a flag for calculating the
40-bit RC4 key based on the Windows NT hash instead
of the Lan Manager hash, but this feature has not yet
been implemented. There are no provisions for calculat-
ing the 128-bit RC4 key using the Windows NT hash,
even though this would be more secure (but still much
less secure than a random 128-bit key).

In either case, the overall security of the encryption is
not 40 bits or 128 bits, but the number of bits of entropy
in the password. Experimentally, English has about 1.3
bits of entropy per character [CK78]; case variations,
numbers, and non-alphanumeric characters increase that
value significantly. Any attack that tried a dictionary of
weak passwords would be able to read most encrypted
MPPE traffic. Additionally, the stylized headers in the
PPP packet make it easy to collect known plaintext and
test whether a particular key guess is correct.

The 40-bit RC4 suffers from even more serious weak-
nesses. Because there is no salt, an attacker can pre-
compute a dictionary of ciphertext PPP headers, and
then quickly look-up a given ciphertext in this dictio-
nary. When looking for known plaintext locations in-
side the MPPE packets, an attacker can take advan-
tage of the abundance of SMB and Netbios communica-
tions that occurs in standard Microsoft communications
[Hob97, MB97].

Moreover, the same 40-bit RC4 key is generated every
time the same user initializes the PPTP protocol. Since
RC4 is an output-feedback mode cipher, it is trivial to
break the encryption from the ciphertext from two ses-
sions. This severe security weakness is mentioned in the
most recent MPPE specification [PZ98], although it is
missing from the previous version [Pal96b]. No version
of the Microsoft documentation mentions that the same
key is used in both the forward and backwards direction,
guaranteeing that the same keystream is used to encrypt
two different plaintexts.

The 128-bit RC4 uses a 64-bit nonce in the key gen-
eration process; this makes precomputed dictionary at-
tacks impractical. Still, brute-force against the pass-
word is much more efficient than brute force against the
keyspace. The nonce also means that two sessions using
the same password will have two different 128-bit RC4
keys, although the same key will be used to encrypt the
plaintext in both directions.

5.3 Bit Flipping Attacks

RC4 is an output-feedback mode stream cipher, and does
not provide any authentication of the ciphertext stream.
Since there is no other authentication mechanism pro-
vided for in MPPE, an attacker can undetectably flip
bits in the ciphertext. If the underlying protocol is sensi-
tive to particular bit toggles–to enable or diable features,
turn on or off options, reset parameters–this attack can
be very fruitful. Note that this attack does not require
the attacker to know the encryption key or the client’s
password. Of course, higher-level protocols might detect
or prevent these sorts of attacks.

5.4 Attacking Resynchronization

If a packet is dropped in transit or arrives with an un-
expected coherency count in the MPPE header, a resyn-
chronization of keys takes place. The end that recieved
the inconsistent packet sends a message to the sender re-
questing resynchronization. Upon receipt of this requst,
the sender end re-initializes the RC4 tables and sets the
“flushed” bit in the MPPE header. When a system sees
the flushed bit set in a packet, it re-initializes its RC4
tables and sets the coherency count to the match the one
it just recieved.

This creates the problem whereby an attacker can either
spoof resynchronization requests or forge MPPE packets
with incorrect coherency counts. If this is done continu-
ously just prior to the 256th packet exchange, where the
session key would normally be updated, an attacker can
succeed in forcing the communications channel to never
re-key.

This can be used to recover encrypted plaintext. All an
attacker needs to do is to force a resynchronization. A
simple XOR of the original stream and the resynchro-
nized stream results in an XOR of the two plaintexts.

6 Other Attacks Against MS-PPTP

Even though the attacks that break the MS-CHAP and
MPPE protocols completely negate the usefulness and
security of MS PPTP, there are several other interesting
attacks worth mentioning.

6.1 Passive Monitoring

A tremendous amount of information can be gleaned
by just watching PPTP sessions traverse across the net.
This sort of information is invaluable for traffic ananlysis
and should be protected. However, the server publicly
announces information such as the maximum number of
channels that it has available. This information can be
used to asses the approximate size of the PPTP server,
and to monitor its load. By querying repeatedly with
PPTP START SESSION REQUEST packets, an attacker can
see when new connections are made and when existing
connections are closed. In such a fashion the attacker
can gain information about the system and its usage pat-
terns without necessarily being directly in a promiscuous
location.8

By setting up a standard sniffer and eavesdropping on
public communications, the following information was
recovered from Microsoft PPTP servers:

• Client Machine IP address.

• Server Machine IP address.

• Number of PPTP virtual tunnels the Server has
available.

• Client Machine RAS version.
8We have built automatic programs that query Microsoft

PPTP servers on the Internet every few minutes, and have built
graphs showing usage over time.



• Client Machine Netbios name.

• Client Vendor Identification.

• Server Vendor Identification.

• Internal Virtual Tunnel IP address handed to the
client.

• Internal DNS servers handed to the client.

• Client Username.

• Enough information to retrieve the users password
hash.

• Enough information to retrieve the initialization
value used inside of MPPE.

• Current value of the encrypted packet for the
Client before RC4 is re-initialized.9

• Current value of the encrypted packet for the
Server before RC4 is re-initialized.

In any scenario where communications are encrypted and
the user assumes some level of confidentiality, the above
information should not be so easily obtainable. There is
no easy way for Microsoft PPTP to encrypt this infor-
mation, since the leaks come from outside the channel
that MPPE controls. In some cases, these packets are
the configuration and setup for the stream cipher inside
of MPPE, and must be transmitted before encryption
can begin. The only solution is to encrypt the control
channel, or severely reduce the information being sent
over it.

6.2 Spoofing PPP Negotiations

The PPP negotiation packets occur before and after the
encryption can be applied. Since the method for resyn-
chronization of keys is done via PPP CCP packets, these
communications can never be encrypted in the same
sleeve. Conjoined with this is the fact that there is no
real authentication of the packets. This configuration
stage is thus entirely open to attack.

Spoofing the configuration packet containing the DNS
server could be used to force all name resolution to hap-
pen through a compromised name server.

Similarly, spoofing the configuration packet containing
the internal tunnel IP address could be used to circum-
vent stateful packet filtering firewalls by forcing the client
to connect to external machines from inside the private
network.

6.3 Control Channel and Server Denial of Service

In this paper, not a tremendous amount of attention
has been directed towards the control channel portion of
PPTP. Part of the reason is that it is not clear why this

9This value can tell an attacker when the RC4 key is re-
initialized. By modifying this packet, an attacker may be able
to prevent RC4 from being re-initialized.

channel exists. Everything this out-of-band channel ac-
complishes could be done via PPP negotiations or inside
of unused portions of the GRE header.10

The other major stumbling block was Microsoft’s ac-
tual implementation of the Control Channel. We quickly
found that it is trivial to make a Windows NT machine
running a PPTP server crash with kernel panics of vary-
ing types, sometimes referred to as the dreaded Blue
Screen of Death (BSOD). In fact, it became very dif-
ficult to test the control channel without crashing the
PPTP server. So difficult in fact that most of the at-
tacks we attempted, in order to exploit theorized control
channel problems, crashed the server before the attacks
could complete. The following is a small subsection of
tests that crashed a Windows NT Server with Service
Pack 3 installed:

• Cycling through PPTP CLEAR CALL REQUEST pack-
ets in an attempt to step through the 16-bit space
for call ID’s.

• Iterating through all valid and non-valid values
that could be held in the Packet Type field inside
the PptpPacketHeader.

• Sending invalid values in the PPTP Control Packet
headers.

All of the above packets can be sent to the PPTP
server from outside a firewall, without any authentica-
tion. This, of course, assumes that there is no firewall
configuration that only allows PPTP to the PPTP server
from particular IP addresses or networks. However, if the
users have the ability to access the PPTP server from
anywhere in the world, then an attacker can send these
queries in from anywhere in the world too.

6.4 Potential Client Information Leaks

The Windows 95 client does not properly sanitize its
buffers, and information leaks in the protocol messages.
Although the PPTP documentation states that charac-
ters after the hostname and vendor string should be set
to the value of 0x00 in the PPTP START SESSION REQUEST
packet, Windows 95 does not do this.

80: 0000 6c6f 6361 6c00 0000 3e1e 02c1 0000
96: 0000 85c4 03c1 acd9 3fc1 121e 02c1 2e00

112: 0000 2e00 0000 9c1b 02c1 0000 0000 0000
128: 0000 88ed 3ac1 2026 02c1 1049 05c1 0b00
144: 0000 3978 00c0 280e 3dc1 9c1b 02c1 041e
160: 02c1 0e00 0000 121e 02c1 2e00 0000 2e00
176: 0000 3dad 06c1 74ed 3ac1 1c53 05c1 9c1b
192: 02c1 041e 02c1 0e00 0000 121e 02c1 2e00
208: 0000

80: ..local...>.....
96: ........?.......
112: ................
128: ....:. &...I....

10Microsoft did not implement a full GRE implementation
[HLFT94].



144: ..9x..(.=.......
160: ................
176: ..=...t.:..S....
192: ................
208: ..

The above trace displays the garbage characters that ap-
pear after the hostname and vendor string. The 82nd
through 86th byte contains the hostname, which the
Windows 95 client seems to always set to “local”. The
113th byte is where the vendor string would be located.
A trace of a similar packet from a Microsoft NT PPTP
client shows all of these garbage bytes set to nulls.

There is a distinct possibility for information leaks de-
pending upon how and where these structures are being
allocated from and what was happening internally on
the client system. Further analysis of the Windows 95
code is necessary to determine the full extent of these
information leaks.

7 Conclusions

Microsoft’s PPTP implementation is fragile from an im-
plementation perspective, and seriously flawed from a
protocol perspective. The authentication protocol has
known flaws in it that have been pointed out not only
here, but by groups such as the L0pht. The encryption
is improperly deployed, and this implementation uses an
output-feedback-mode stream cipher whereas a cipher-
block-chaining-mode block cipher would have been more
appropriate. To tie the weak authentication together
with the poor encryption, Microsoft makes the encryp-
tion key a function of the user password instead of using
a strong key-exchange algorithm like Diffie-Hellman or
EKE. Finally, the control channel is neither authenti-
cated nor strongly protected.

We did not spend serious time looking at the clients
local IP forwarding mechanisms and how Microsoft at-
tempted, or failed to take into account, the vulnerabil-
ity that this, now dual-homed, client presents. This, of
course, is a potential problem with any virtual private
network scheme, not just PPTP. We did, however, doc-
ument problems with non-standard subnet masks and
internal tunnel IP traffic being sent from the local net-
work interface card as opposed to from the PPTP server.
Implementors beware!

Finally, we wish to stress that our cryptanalysis does
not break the PPTP protocol [HPV+97], but only Mi-
crosoft’s implementation of it. While Microsoft uses
their own extensions (MS-CHAP, MPPE, MPPC) inside
the PPP section of PPTP, the PPTP specification does
not require this. Vendors may wish to include these Mi-
crosoft extensions for compatibility purposes, but are not
restricted to their use and are encouraged to implement
more secure security extensions. Of course, any new ex-
tensions would have to be understood and implemented
on both the client and server for correct operation.
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A Microsoft PPTP Details

TCP port 1723 on the server listens for PPTP Control
Channel packets, which are sent before anything trav-
els over the GRE tunnel. Through this mechanism, the
server is alerted to new connections that wish to begin
and existing connections that wish to be terminated.

A condensed version of the control channel communica-
tions looks like the following:

1. Start Session (client to server)

2. Start Session Reply (server to client)

3. Out Call Request (client to server)

4. Out Call Reply (server to client)

5. Set link info (server to client)

The first packet sent from the client to the server
(note that we have excluded the standard TCP setup
packets and are examining only the packets directly
related to the PPTP Control channel protocol) is a
PPTP START SESSION REQUEST packet.

The server responds to the PPTP START SESSION REQUEST
packet with a PPTP START SESSION REPLY. This packet
contains information about the server, and a result sta-
tus for the previous request packet. In this packet there
are several items of interest. The NT server properly san-
itizes the hostname and vendor string arrays. The result
states whether the START SESSION REQUEST packet was
accepted and if the client may proceed. The server also
announces the maximum number of channels that it has
available.

At this point the client makes a PPTP OUT CALL REQUEST
to the server. The phone number and sub address arrays
are not filled in for connections directly over the Internet.
Packet processing delay information is included as is the
minimum and maximum connection speeds allowed.

After receiving the PPTP OUT CALL REQUEST, the server
responds with a PPTP OUT CALL REPLY packet, conveying
to the client the status of the processing of the request.

The final communication that occurs in the control chan-
nel, before GRE packets are sent, is to set link info. We
do not know why this was included in the control chan-
nel, and not in the PPP Link Control Protocol section.

The control channel stays open for the duration
of the client to server connection. Periodically,
PPTP ECHO REQUEST packets and PPTP ECHO REPLY pack-
ets are exchanged to ensure that both sides are



still active. When the client disconnects from the
server the control channel sends back and forth one
of the following packets: CALL DISCONNECT NOTIFY,
CLEAR CALL REQUEST, or STOP SESSION REQUEST, de-
pending upon the situation.

In a full-fledged connection the above communications
take place, followed by further communications and ne-
gotiation at the PPP layer.

After the PPTP Control Channel Set Link Info packet,
GRE (IP prototype 47) packets with PPP payloads
are transmitted. The first part of the setup entails
PPP setting up negotiations for how subsequent pack-
ets will be treated through standard PPP Link Control
Protocol (LCP) and Network Control Protocol (NCP)
negotiations.11

B MS-CHAP Details

A typical MS-CHAP protocol exchange looks like the
following inside of a PPP LCP packet. This is the initial
client message:

c0 21 01 00 00 13 03 05 c2 23 80
[extra negotiation removed]

0xc021 - LCP packet
0x01 - Configure Request
0x00 - ID 0
0x13 - length 19 bytes
0x03 - Authentication
0x05 - CHAP option length 5 bytes
0xc223 - CHAP
0x80 - MS-CHAP

As can be seen from the above, the LCP configuration
is identical to standard CHAP except for the change in
algorithm type to 0x80 to represent MS-CHAP.

The actual challenge comes across in a reply packet from
the server:

c2 23 01 00 00 0d 08 cf 4f 0e 72 89 04 3b

0xc223 - CHAP packet
0x01 - challenge
0x00 - ID 0
0x000d - length 13 bytes
0x08 - value size of the challenge
0xcf4f0e7289043b0c - challenge value

The Client response follows:

c2 23 02 00 00 53 31 41 77 45 5b d1 d8
11In our test environment, standard PPP LCP and NCP pack-

ets are exchanged with the following negotiations being agreed
upon: Protocol Field Compression is on, Address and Control
Field Compression is on, Call Back numbers are negotiated via
PPP Call Back Control Protocol Packets and subsequently set to
empty values as we are connected over the internet, MS-CHAP
is used as the CHAP authentication, Microsoft Point to Point
Compression is not used, the tunnel IP address for the client, the
DNS server for the client, IP header compression, and Microsoft
Point to Point encryption using a 40-bit session key.

60 68 fd d3 8e 4d 68 aa 24 6f 0c d6 95
34 7b 8c 9a 31 19 6c 45 57 78 77 a0 d0
4a 47 7a 36 a1 8a 57 8e 76 c6 36 78 a1
14 79 0f 01 41 64 6d 69 6e 69 73 74 72
61 74 6f 72

0xc223 - CHAP
0x02 - Response
0x00 - ID
0x0053 - length 53 bytes [The ascii

string has been changed to protect
the innocent]

0x31 - Value length of challenge response
0x4177455bd1d86068fdd38e4
d68aa246f0cd695347b8c9a31 - LANMAN response
0x196c45577877a0d04a477a3
6a18a578e76c63678a114790f - NT response
0x01 - use Windows NT compatible challenge

response flag
"Administrator" - account name

The Microsoft PPP CHAP Extensions document de-
scribes the “use Windows NT compatible challenge re-
sponse flag” as telling the end system to use the NT
response in preference to the LANMAN response. The
LANMAN response can be set to all 0’s in this case.

C MPPE Details

Microsoft Point-to-Point Encryption protocol is negoti-
ated inside the PPP Compression Control Protocol as
type 18 (0x12).

If the least significant octet in the option field is 0x20,
then a 40 bit session key is being requested. Similarly,
0x40 requests a 128 bit session key.

A sample exchange would appear as follows. The Client
sends the Server:

80 fd 01 05 00 0a 12 06 00 00 00 20

0x80fd - Compression Control Protocol
0x01 - Configure Request
0x05 - ID 5
0x000a - Length 10
0x12 - type 18 MPPE
0x06 - Length 6
0x00000020 - 40 bit session key

The Server sends the Client:

80 fd 02 05 00 0a 12 06 00 00 00 20

0x80fd - Compression Control Protocol
0x02 - Configure Acknowledgement
0x05 - ID 5
0x000a - Length 10
0x12 - Type 18 MPPE
0x06 - Length 6
0x00000020 - 40 bit session key

At this point, the client and server have succesfully
agreed upon MPPE 40 bit encryption. If the client



or server wished to refuse the CCP Configure request
packet, a CCP Configure Reject packet would have been
sent instead of a Configure Acknowledgement.


